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Abstract 

. 

Theories of electron impact broadening have previously 

neglected the radiation produced by the perturbing 

electrons. 

the perturber radiation into account, and so to evaluate 

possible interference terms. These may lead to observable 

asymmetries of lines of ionized emitters. 

In this paper a theory is developed to take 
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I. INTRODUCTION 

The treatment of the electron impact broadening of 

spectral lines emitted by ionized species in a plasma has 

recently been the subject of much attention'". Discrepancies 

of up to an order of magnitude between experimental 

line-widths and the predictions of earlier classical path 

theories3 have been attributed to the use of straight rather 

than hyperbolic classical paths in the theory6, the importance 

of perturber energies close to threshold for inelastic 

collisions'r2, and the importance in many cases of lower 

state interactions. Various attempts have been made to 

modify the existing theory appropriatelylJ2. 

the advent of sources of high temperature plasma of extreme 

density, particularly plasmas generated with high power 

laser beams, has allowed observations of electron impact 

broadening to be extended to ionization stages as high as 

the ninth6. 

Simultaneously, 

An approximation made in all previous theories, which 

needs reconsideration if the lines of interest are emitted 

by ions, is the neglect of the coupling between the external 

radiation field and the perturbing electrons. This 

approximation is inherent in the classical path theoryS 



3 

c 

. 

and is also made in the relaxation theory', which distinguishes 

between the absorbing 'system' (an atom or ion) and the 

surrounding plasma 'bath'. Bezzeridess has recently given 

a theory of iine-broadening using the temperature - Green;s 
function technique. 

coupling could be included within this approach by considering 

explicit contributions to the photon propagator. 

Bezzerides'expression of the line-shape in terms of a 

two-particle atom-hole propagator effectively ignores such 

effects. The use in his theory of distinct propagators for 

perturbing electrons and for 'atoms' (the latter including 

both translational motion and internal excitation) is 

appropriate in considering the broadening of lines of neutral 

atoms, but is very much less convenient when both bound and 

free electrons interact primarily with the field of the same, 

highly charged, ion. 

In principle the radiation-perturber 

However, 

The present paper develops a theory which treats the 

bound and perturbing electrons on an equal footing in so far 

as their coupling to the radiation field is concerned. The 

resultant absorption cross-section contains interference 

terms which can cause observable asymmetries of otherwise 

Lorentzian line-profiles. These asymmetries have a formal 

similarity to those observed in the profiles of lines due to 
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transitions to autoionizing states in unperturbed atoms, 

since both cases involve an interference between two possible 

decay channels of a system. 

11. FORMULATION 

The cross-section for absorption of a photon by a system 

can be written in terms of the diagonal elements of the 

transition operator, T: 

2 

?IF Im xi T ii o = -  - 

where F is the photon flux (see e.g. Ref. 9 ) .  This expression 

neglects some effects of the medium by assuming that the 

internal and external fields are identical. We shall also 

neglect Doppler-shift and recoil effects. In most electron 

broadening problems the errors produced are negligible. 

The evaluation of u, which would otherwise be a many-body 

problem, is made possible by the one-electron approxirnati~n~~~,’~. 



5 

Barangerlo has shown that, if the impact approximatior9,lo holds 

for frequency separations from the line center as large as 

one-line width, T, then the line wings at separations greater 

tnan r can be treated as if each absorber interacted only 
with a single perturber. The system of interest then consists 

simply of one atom or ion, one perturber, and a photon. The 

criteria necessary for this approximation to be valid 

usually hold in electron broadening problems, and since the 

region of interest in this paper is the line-wing, the 

one-electron approximation will be adequate. 

to the line-core, treating the many-perturber case in the 

impact approximation, is given later. 

A generalization 

The Hamiltonian of the simplified system is written as 

H, where: 

H = Ho + H' 

Pa Zea 

2m ra 

2 Ho = Xio (ion) + - - - + H"(rad) 

int rad H' = V + v  

P A(r.) + - 
J 2mc2 

e2 
j A2(rj) j j  

Vrad - - -  
mc 

( 3 )  

(4)  

(5) 
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Although widely used in line-broadening problems, this 

expansion may be of doubtful utility in some instances. 

However, it is entirely adequate for  present purposes, 

since we dre i n t e r e s t e i i  in evaiuating tne reiative 

contributions of various terms, and if necessary this can 

be done order by order. 

Baranger'' has calculated the line-width in the 

one-electron approximation by using the Born expansion of 

the T-matrix, and the alternative prescription of calculating 

the sum of the squares of the off-diagonal elements. He 

considered elements deriving from only one order in the 

expansion of T, and obtained a Lorentz line-shape. This 

neglects other contributions to 0, which are more apparent 

if we consider the diagonal elements of T, and which, although 

usually small, are of lower order than those yielding the 

Lorentz shape. The expression of CJ in terms of the diagonal 

elements of T is also nearer to the form of the many-body 

technique', and simplifies the averaging over perturber states 

and over angles. Baranger's cross-section is identical to 

one of the three terms considered below. 
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Diagrammatic Representation of T 
ii -- 

" 

The physical processes of interest, i,e. the various 

rad int alternative orderings of V and V in ( 8 ) ,  are 

conveniently represented in diagrammatic form, Figure 1. 

Each solid line represents either a bound or a perturbing 

electron in an eigen state of Ho. Since these are Coulomb 

states, the emission or absorption of radiation requires 

only a single vertex, representing a matrix element of the 
rad interaction V . The interaction between the electrons, 

Vint, is shown by a dotted line. The diagrams in which both 

photon lines intersect a bound electron line correspond to 

line radiation (including the usual broadening processes) and 

those with both V interactions in a 'free' electron line rad 

represent continuum radiation (hydrogenic bremsstrahlung, 2 ( A ) ,  

plus corrections due to the presence of the bound electron), 

We are interested here in a third class, e.g. 3(A), which is 

mixed in the sense that one photon vertex occurs in the bound 

line and one in the 'free' line. These diagrams occur 

essentially because both bound and free electrons move in the 

field of the same ion. 

The interpretation of the diagrams is straightforward. 

Each vertex contributes the appropriate matrix element of 

Vrad int or v . A factor G is associated with each region between 
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two vertices. Thus, if the bound and free electrons are in 

states b and B respectively, the factor is G bP , where: 

= E  = < aaylHOlaay > = + + t ~ o  
Ei aaY 

Finally, the statistical average is carried out by 

associating a factor pa with the initial perturber state a, 

and then summing over a. Thus, for example the expression 

corresponding to 3 (A) reads: 

ba ba > G < ba Vrad lacly > 

The diagonal nature of the T-matrix elements required 

in determining (J can be emphasized by joining the initial 

and final lines for the free and bound electrons. The 
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r e s u l t i n g  'bubble '  diagrams (F igure  2 )  are both  more succ inc t ,  

and i n  closer correspondence t o  Bezzerides '  theory'.  

usua l  r u l e s  of g r a p h i c a l  pe r tu rba t ion  theory' '  then apply t o  

t h e i r  i n t e r p r e t a t i o n ,  except t n a t  tne energy of eacn s t a t e  

is  taken a s  being t h a t  of a s t a t e  of Ho, and a weight ing factor 

i s  introduced i n  l i e u  of  using temperature Green's func t ions .  

The 

O C t  

F i g u r e  3 i l lustrates  t h e  r e l a t i o n s h i p  between t h e  present  

diagrams, and t h e  more complicated diagrams t h a t  w o u l d  r e s u l t  

i f  t h e  more u s u a l  free p a r t i c l e  s t a t e s  had been employed 

i n s t e a d  of t h e  Coulomb s t a t e s  used i n  F i g u r e s  1 and 2 .  

111. CONTRIBUTIONS FROM SPECIFIC  DIAGRAMS 

W e  now cons ider  t h e  con t r ibu t ions  t o  t h e  absorp t ion  

c ross -sec t ion  of diagrams 1 ( B ) ,  l ( C ) ,  and 3(A) . 1 ( D )  and 

3(B) ,  ( C ) ,  (D)  can be shown t o  c o n t r i b u t e  w i t h  t h e  same s i g n  

a s  1 ( C )  and 3(A),  and w i l l  be included only  i n  t h e  f i n a l  

d i scuss ion .  2 ( A )  g ives  t h e  usua l -ss t rah lung  cross-sec t ion  

w i t h o u t  d i f f i c u l t y  and is not e x p l i c i t l y  considered. The 

c o n t r i b u t i o n  t o  ,, of each of t h e s e  diagrams is proportional 

t o  t h e  number d e n s i t y  of t h e  pe r tu rb ing  e l e c t r o n s ,  ne, and of 

i o n s  i n  the ground s ta te ,  n,. 

equal t o  u n i t y  throughout.  

ne and na w i l l  t h e r e f o r e  be set 
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Interaction Matrix Elements 

int we write V as a multipole expansion: 

I k== k 

( 1 3 )  
l t  

k k e2 r e” 

r12 r2 ‘a 

Vint < c (1) c ( 2 )  - - = - -  - = ea 

int 
Matrix elements of V are therefore of the form 

(14) 
k k where R (act, bB) and C have their usual meanings, for instance 

as given by Shore and Menzell’. 

In most cases of interest in line-broadening, we obtain 

a very good approximation by neglecting that part of the 

generalized Slater integral R k (aa, bB) where r2 < rlJ and by 

assuming instead simply that r2 r,. Then the matrix 

exactly cancels the monopole (k = 0) element in - 
contribution in the summation over k, and we can simplify the 

e2 
ra 

expression for v int to: 
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In this approximation exchange contributions vanish. 
sad The matrix elements of V are written in terms of 

tensor operators in an exactly similar way and we retain 

- - - L - l  L - - L J  --- mL -- 
GVI ILL  A Y U G A U I I D  e A l l C X & i  

where 

00 

I(a,b) = 1 p,(r) r Pb(r) dr 
0 

and y ,the constant appropriate to electric dipole radiation, 

is : 
1 

cua 

37ra c" 
with the flux, F = - . 
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Evaluation of the Matrix Elements Correspondinq -- to Each Diaqram 

The expressions for the three contributions of interest 

can now be written out: 

a k  1 (B) 
T. .(a) = - 2 ( y  )ae4 oa(Gba)" I(a,b) R (ba,ba) 
11 1 

1 (c) ba k k '  
T (w) = - 1 ( y  laesOa(G )aGb'B(I(a,b)a R (ba,b'B)R (b'B,ba) 
ii 1 

b,bi,aJB 
k,k',m 
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In each case the expression is broken into two parts. 

The square brackets contain the angular dependence, both of 

the summation over intermediate states and of the average 

~ v e r  initial emitter-perturher orientations. 

part contains the averages and summations over the initial 

and intermediate energies and momenta of the perturbing 

The remaininy! 

electron, and over the intermediate energies of the bound 

electron. 

The - Anqular Average 

Previous electron-impact broadening theories have either 

carried out the angular average classically3 or have used 

the properties of the 3-j  symbols,together with a coordinate 

rotation4 (in the classical path case), or a summation over 

appropriate quantum numbers in a representation in which the 

angular momenta of bound and perturbing electrons are 

uncoupledl? However, the analysis can be considerably 

shortened by using a coupled representation chosen to diagonalize 

Vint 

make the angular average particularly succinct. 

. The summation properties of the 6-j symbols12 then 
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The single-particle perturber states we use in 

constructing the basis of the coupled representation are the 

well-known Coulomb wave functions for an electron of 

moneiitiiri ?j, d e c ~ i p s e d  intw part ia l  waves, For instance as 

given by Alder et ai?. An outgoing wave is then: 

This function is normalized to unit particle density 

and to: 

Since for the present problem the perturber momentum, 

h ~ ,  is distributed isotropically with respect to the (arbitrary) 

direction of quantization, and since the summation over each 

intermediate state introduces a term of the form: 

we may directly integrate over all perturber angles, Q, and 

ignore the y (a) factors from now on. We need make no 
xm 
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distinction between incoming and outgoing waves in the initial 

or intermediate states, since the relevant factors in 

Ik > 41 just cancel. (Note that the immediacy of these 

simplifications is a resui i ;  of usiny  the diagoiial rather 

than the off-diagonal elements of T in obtaining 0 . )  

We are left simply with a normalized product of radial 

and angular functions, and instead of product states we may 

immediately use coupled states. The choice of a coupling 

scheme diagonalizing V , which is essentially the 

electrostatic interaction, is obvious from the usual theory 

of atomic spectral2. 

the energy and angular momenta of the perturbing electrons 

are usually high, the most 'physical' choice is the j r . ( K )  

int 

In line-broadening problems, where 

scheme. 

The details will be given only for the contribution to 

the cross-section corresponding to diagram 3 ( A ) ,  the 

development being similar in the other cases. Note that since 

the initial-emitter perturber orientations are isotropically 

distributed, this average is carried out simultaneously with 

the summation over the intermediate quantum numbers. 



17 

The angular part of (21) is: 

Y MM ' MI' 

KK' 
r r l  u u  

We proceed by first writing out the M-dependence 
k *  q k  
9 -q' 

explicitly in terms of 3-j symbols, using (C ) = (-1) C 

and q = M - MI: 

JJ I 

Carrying out the summation over M and M' we next write out the 

expression in terms of matrix elements,fully reduced to the 
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uncoupled scheme: 

where each term in square brackets represents a different 

stage in the reduction process. 

properties12 : 

Use of the summation 
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and 

r e p e a t e d l y  i n  c a r r y i n g  o u t  t h e  summations over J, J', K, K' 

( i n  t h a t  order) t h e n  f i n a l l y  y i e l d s :  

2 J  The factor (-1) is matched by a f a c t o r  of t h e  same 
I 

p a r i t y  when t h e  matrix elements between j, and j ,  a r e  f u r t h e r  

reduced. I n  t h e  s imple case of one bound e l e c t r o n  t h e  

expres s ion  can then  be w r i t t e n  

I f  t h e  e m i t t i n g  i o n  i s  i n  a close approximation t o  fs 

coupl ing ,  and t h e  various t r a n s i t i o n s  w i t h i n  a m u l t i p l e t  a r e  

unreso lved  i n  comparison w i t h  t h e  l i n e  width,  t h e  v a r i o u s  

cbB factors are e f f e c t i v e l y  t h e  same for  a l l  values of j i  
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and we may, therefore, sum over this quantum number. 

The final result, when we substitute the angular factor 

, is: 3 (A) back in Tii 

ba af3 
= 1 e4(y ) 2  PaG G I(a,b)I(B,a)Rl(ba,aB) T3 (A) 

ii 1 b,@ 

1 ( c )  
In an exactly similar way the angular part of T ii 

can be reduced to a final form: 

(2k+l) 

I II 

Carrying out summations over j l ,  j, with the assumptions 

yields : (C) discussed above and substituting into T ii 
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In the case of diagram 1 ( B )  the summation over K and K' 

finally reduces to a term including: 

But the summation over k is explicitly restricted to k 2 1 

from the considerations preceding equation (15). Consequently, 

so long as the assumptions stated there hold, the 

contributions of diaqrams of type 1(B) vanish14. 

Evaluation -- of the Cross-Section 

The contribution to the cross-section (J at a frequency 

u) of each of the diagrams is obtained by taking the 

imaginary part. Since the remainder of the terms are real, 

it is clear that both cases 1(C) and 3(A) contribute to the 

cross-section only at the singularity in Gb"(cu) 

(b' = a in case 3(A)), i.e., when the energy of the perturber 

in state B is such that: 

+ E  . B E + Ea + tt0 = Ebl a 
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- The Isolated Line Approximation 

We now eliminate the summation over b by making the 

isolated line approximation; that is, we assume that we are 

dealing with a system for which at the frequency of interest 

is appreciable for only one state b. This cab = 1 
E -Eb+t2u a 

is, of course, the situation for most lines of non-hydrogenic 

emitters at moderate densities. 

Evaluation of the Radial Inteqrals, Rk I and Summation - over Perturber States 
-- -9  -, - 

The assumption already made that r, > rl allows the 

generalized Slater Integrals occurring in the expansions 

given above to be factored into two parts. Thus, for 

instance: 

Here P (rl) is the usual radial functioh for the bound a 
ta electron, and F (K rz) is the corresponding solution to a 

the radial equation for a free electron of momentum Ka and 

and angular momentum 4, (see, e.g., Alder et a1.13, Baranger''). 

Because we have considered only dipole radiation, k = 1 is 
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the only term contributing to 3(A) and will usually also 

be very much the dominant term in 1(C). 

Thus we are interested in integrals of the form (using 

the notation of Aider et ai.j 

k The remaining part of R for the bound electron is 

of just the same form as the integral occurring in the 

radiation vertex, I. 

Case 1(C) 

For the case 1(C) the summation over perturber states 

can then be carried through. The summation over perturber 

momenta becomes an integral over energies, which leaves a 

contribution of unity from the principal part integral in 

G 

M4 .c over kcland 4, 

function 

and a factor of KBm . The remaining summation of b’B 

-a  (8~) ha 
can be expressed in terms of the B 

Q, 5 
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(Alder'') suitably modified" for an attractive Coulomb 

interaction. 

above gives a cross section identical to Baranger's'': 

Substitution in the expression for T (a ii 

n 

( 2 4  +1) a 3 

Diaqram 3 ( A )  

The contribution of this diagram contains a single 

term in M - ~  plus a term due to the vertex at which the 
4. ,G p 

perturber radiates of the form: 

Rather than evaluate I(@,a) directly we shall relate 

it to the matrix element M-' 

motion for the perturber in the field of the ion's chargel': 

by using the equation of 
'a 'p  
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Here o, is the frequency of the a B transition, and is 

thus approximately the photon energy, 

The contribution of 3(A) can now be expressed in a 

form similar to that of 1 ( C )  by substituting for I(B,u) 

as above. The final result for the cross section is: 

TT Ze2 2(2. +l)Max( 'd,, Ab) 
la x - g(Ea,EB) - . 

J3 m J2 (2ca+1) 
(43)  

Many-Perturber Treatment 

The magnitude of the effects discussed below is such 

that the one-electron approximation is always adequate. 

However, to the same order of approximation it is easy to 

formally incorporate a many-electron treatment by suitably 

correcting the propagators in the diagrams of Figure 2. 
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To do this we use the impact-appro~imation~~~, that is we 

assume in evaluating the diagrams that the interactions of 

separate perturbers do not overlap'. 

Thus, neglecting lower state interactions, we are 

interested in the following two diagrams: 

u 
where the 'exact' bound propagator represented by :* 

is got from inserting an arbitrary number of self-energy 

parts into the free propagator line .+ , i.e.: 

or: 
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where xis the sum of a l l  diagrams of the type a 

W i t h  the appropriate form for .L we can now 

evaluate the two diagrams, Diagram (A) gives a Lorentz 

prof i le ,  t h u s :  

1 r 
(Ea-Eb+hQ)+iT ( E , - E ~ + ~ K ~ )  a+r2 

- - a Im 

I n  the case of diagram (B) we require the r ea l  part  of 

since the f ree  electron loop already contributes an extra 

factor of i. Thus: 

(E  -E +ho) 
B a b  u a  

( E  - E ~ + ~ c u )  2+r2 a 

For (E  -E +tKD)>> r t h i s  is of the form we have already 

derived i n  the one-electron treatment. For (Ea-Eb+nO) < r 
t h e  contribution of u ( B )  i s  proportional t o  (Ea-Eb+hu)r'l, 

and t h u s  goes t o  zero at the l ine  center. I n  other words 

when the e f fec ts  of many-perturbers are included,while 

a b  

(A)  

y i e l d s  a Lorentz prof i le ,  (B) gives a cross sect ion which 

(44) 

varies w i t h  frequency i n  the same manner as  the refract ive 
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index in the neighborhood of a spectral line. 

IV. D I S C U S S I O N  

Since in case 1 ( C )  f(Ea,E ) depends upon the 

particular intermediate state b', we have to specialize 

somewhat in order to directly compare the contributions of 

1 ( C )  and 3 ( A ) .  We shall consider the particular case where 

b' = a, i.e., where the perturber induces transitions to 

the lower state of the optical transition itself. This 

situation can be of importance in practice, with most, if 

not all, of the contribution of 1 ( C )  to the cross-section 

being due to interactions between upper and lower states. 

A particularly obvious example is the 2s2S - 2p2Po transition 
in lithium-like ions, but in many other cases the lower and 

upper states strongly interact. Another example is the 

2p1P0 - 29'D 2296.89 A transition in C 111. 

of the cases1 J where large discrepancies have been found 

between the early calculations of Griem3 and experimental 

line widths, the b' = a term in the sum over b' contributes 

up to 50"/0 of the line width. 

B 

A l s o  in many 
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A direct comparison can then be made between 1 ( C )  

and 3 ( A ) ,  since all the factors depending on the initial 

and intermediate perturber energies are the same in the 

two cases. B 
will contribute an equal amount to that of l ( C ) ,  and similarly 

3 ( B ) ,  (C), (D) will equal 3 ( A ) .  

When g(Ea,E ) is close to unity diagram. 1(D) 

To the order to which we have calculated them, the 

relative contributions of type 3 and type 1 diagrams will 

therefore be: 

Clearly the type 3 diagrams introduce an asymmetry into the 

line profile, in comparison with the symmetric profile due 

to the type 1 cases. Since (E -E +hw) will be of the order 

of a few line widths, i.e., between loL1 and 10la C.P.S. in 
a b  

typical cases at optical frequencies, we see that the 

asymmetry may vary between much less than 1% and several 

percent, depending on the particular transition, and on the 

exact frequency separation from the line center (see specific 

examples below). For a given transition the percentage 

asymmetry at a fixed frequency separation from the line 
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center is independent of the perturber density. 

as the perturber density is raised a given asymmetry will 

occur at a smaller number of half widths from the line 

center (the half-width of the Lorentzian component, (J', 

being proportional to the perturber density), and hence 

the asymmetry will become more noticeable relative to the 

peak height of the line. 

Consequently, 

The overall absorption profile can be written in the 

form: 

tot 
(3 (0) = (J1 + oz + o3 

A+B ( 0 - - 0 , )  

= c(0) + 
( 0 - 0 0 )  

(47) 

Ea'Eb where w, = - 

and C(o) is the essentially constant contribution of 02 .  

The overall profile is the same as the well-known 'resonance,' 

'autoionization, ' or 'Fano' profile' approximated for 

(cu-cu,) large compared to the half-width. 

Since ( J ~  can be both negative and larger in absolute 

magnitude than o1 it is necessary to check that (J tot 2 o in 

the present approximation for all values of (0-0,). This 
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w i l l  be so a s  long as: 

I n  f a c t  eva lua t ion  of u2 e a s i l y  shows t h a t :  

t o t  
I t  is t h e r e f o r e  poss ib l e  f o r  o t o  be i d e n t i c a l l y  

zero  i n  t h e  p re sen t  approximation,but never nega t ive .  
0 t o t  

can i n  f a c t  be zero  on ly  i n  t h e  s p e c i a l  case when .e 

(which  i n  any case  w i l l  t u r n  o u t  t o  be t h e  m o s t  important 

= 0 a 

case for  other reasons) .  T h i s  is e s s e n t i a l l y  a consequence 

of t h e  summation over j; carried o u t  i n  t h e  angular  average 

Of Tii s i n c e  exac t  i n t e r f e r e n c e  occurs only  when a s i n g l e  

in t e rmed ia t e  s t a t e  b' is  included i n  ul, and b '  a. When 

4 # 0 t h e  possible range of j 
a a 

inc reases  t h e  importance of 

t o t  o1 r e l a t i v e  t o  0, and 0 never reaches zero,  although it 

may s t i l l  be less than  t h e  'background' continuum l e v e l ,  a2.  

is zero  a t  a frequency t o t  
I n  t h e  s p e c i a l  case 4, = 0, 0 a 

2 
U1 

s e p a r a t i o n  from t h e  l i n e  center s u c h  t h a t  - = -2 .  W e  now 

cons ide r  some p a r t i c u l a r  cases i n  order t o  estimate t h e  
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magnitude of s u c h  frequency s e p a r a t i o n s  and t o  cons ider  t h e  

p r a c t i c a l  impl ica t ions .  

I t  is c l e a r  from t h e  d iscuss ion  above t h a t  s u c h  e f f e c t s  

w i l l  be important on ly  when a )  t h e  broadening mechanism 

involves  p r imar i ly  t h e  i n t e r a c t i o n  of t h e  upper and lower 

states of t h e  o p t i c a l  t r a n s i t i o n ,  and b) t h e  lower s t a t e  of 

t h e  o p t i c a l  t r a n s i t i o n  is  a n  S s t a t e .  T h i s  e f f e c t i v e l y  

regtricts t h e  t r a n s i t i o n s  of i n t e r e s t  t o  those  between l e v e l s  

of p r i n c i p a l  quantum number two, i .e.  of t h e  type  

2s" 2pn 4 2sm- l  2pn+l (as  a l ready  mentioned above) , a p a r t  

from some t r a n s i t i o n s  i n  complex i o n s  where  i n  c e r t a i n  

' a c c i d e n t a l '  cases  t h e  lower s t a t e  may be t h e  c l o s e s t  

i n t e r a c t i n g  l e v e l  t o  t h e  upper s t a t e  of t h e  o p t i c a l  

t r a n s i t i o n  (e.g. ,  h4806, 4s4P - 4p4P, A r  11). 

As s p e c i f i c  examples we cons ider  t h e  N I1 resonance 

l i n e ,  h1085.1 w, 2 s 2  2p2 3 P  - 2 s  2p3 3 D 0  , t h e  C I11 h2296.8 %. 

2 s  2p l P 3  - 2p2 ID t r a n s i t i o n ,  and t h e  C IV h1549.1 1 

resonance l i n e ,  2s2S - 2p2P0. Using t h e  l i n e  s t r e n g t h s  

quoted by Wiesel' and t h e  u s u a l  r e l a t i o n s  f o r  t h e  l i n e  and 

m u l t i p l e t  f a c t o r s ,  w e  can e s t ima te  t h e  t r a n s i t i o n  i n t e g r a l  

I ( a , b ) ,  and hence t h e  wavelength s e p a r a t i o n  from t h e  l i n e  

core a t  w h i c h  t h e  asymmetry between b lue  and red  wings is 

lo"/, ( t h e  b l u e  wing being the  s t r o n g e r ) .  The r e s u l t s  a r e  
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given in Table I. 

The values of Ah quoted in the table are extremely 

large in comparison with the Stark widths of such transitions 

at the densities found in the more conventional laboratory 

plasmas (i.e., n = lo1" - 1017 ~ m - ~ ) ,  However, they are 
only of the order of the line widths expected at the extreme 

densities found in some of the newer plasma sources, such 

as laser-generated plasmas' or I plasma-focus I devices15 , 

(i.e., n a 10"' ~ m - ~ ) .  Thus the C IV line is expected 

(from approximate estimates of excitation rates) to have a 

half-width of the order of a few-tenths of an Angstrom at 

such densities, and the C I11 2296 J. line has been observed 

to have a half-half width exceeding 5 A in a plasma generated by 

focusing a Q-spoilt laser onto a carbon target16. In these 

cases such asymmetries may well be significant. Also it is 

possible to observe the profile of resonance lines at 

relevant separations from the line center even in plasmas of 

much lower densities, if the conditions are such that the 

optical depth at line-center is large, a technique adopted 

by Griem and co-worker~'~ in obtaining both f-values and 

damping constants, Interference asymmetries of this sort may 

therefore be observable at the relatively low densities found 

in conventional discharges and magnetic compression experiments. 

e 

e 
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-2, i.e., The zero predicted in (5 occurs where - = total u3 
o1 

a factor of 40 further into the line wing than the values of 

AA given in the table. Clearly this is much greater than 

the line widths under all conceivable experimental 

circumstances. However, since the existence and position 

of this zero is independent of perturber density (as is the 

line-to-continuum ratio at large distances in the line wing), 

this effect may be observable even under conditions in which 

the Stark width of the line of interest is extremely small. 

For the C I11 line this effect will always be negligible, 

since the lower state of the transition is not the ground 

state of the ion, and thus contributes negligibly to the 

total underlying continuum intensity. Similarly in many 

experimental situations the continuum intensity may be due 

to other species of ion, frequently, of course, to protons, 

and the continuum intensity due to a small-concentration 

impurity of some particular ionic species will not be 

observable. However, in the two particular experimental 

situations mentioned above the circumstances may be very 

different. Under appropriate temperature conditions in 

laser-generated plasmas the continuum-intensity near a 

resonance transition may be largely or entirely due to 

Bremsstrahlung from electrons interacting with ions in the 
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ground state of the same resonance transition. The same 

may be true in plasma-focus devices if operated in gases 

other than hydrogen, or even if the ion of interest is present 

as a small-concentration impurity, since the extreme values 

of ion-charge which can be reached ( Z  > 18) can result in 

the Bremsstrahlung from such small concentration but highly 

ionized impurities entirely dominating that due to protons or 

deuterons. 

in such transient devices will also tend to ensure that a 

significant percentage of the total ion concentration is in 

this stage. In these cases significant deviations from the 

continuum intensity expected on a fully-stripped ion model 

may occur in the vicinity of resonance transitions of the 

type discussed above. 

The difficulty in rapidly stripping Li-like ions 

CONCLUS IONS 

The consequences of the usual neglect, in theories of 

electron-impact broadening, of radiation due to the 

perturbing electrons have been investigated. Inclusion of 

the dipole-radiation due to the perturber results in an 

interference effect, as well as the normal Bremsstrahlung 

radiation. This interference produces an asymmetry of the 
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impact-broadened profiles of resonance lines, especially 

the 2s3S - 2paPo transitions of Li-like ions, and under 

particular circumstances, may produce a strong interference 

dip in the continuum intensity on the red-side of the line. 

The interference effect is not significant, in so far 

as the line-profile is concerned, unless the major broadening 

mechanism involves the direct interaction of the upper and 

lower states of the line of interest, and even then the 

resulting asymmetries are small at normal densities. 

at the extreme densities found in laser-generated plasmas, 

such effects may well be observable and important, as they 

may be also at lower densities if the extreme wings of 

optically thick lines are observed. The deviation of the 

continuum intensity from the simple theory may also be 

observable even at low densities, Such interference effects 

may also be important in determining the profiles of 

low-frequency transitions between excited states of heavy 

ions, in view of the explicit dependence on w in Eqn. ( 4 5 ) -  

However, 

In addition such asymmetraes may perhaps be relevant in 

interpreting in detail the ultra-violet spectra of early-type 

stars, e.g., those studied by Morton1', where lines such as 

C IV 2saS - 2pZp0 are both observed in abosrption, and are 
expected theoretically to be strong several Angstroms into 

the wings. 
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Figure Captions 

Figure 1: Diagrammatic representation of contributions 

int to T. throuqh second order in V . ii 

Figure 2: Bubble diagram representation of the diagonal 

T-matrix elements shown in Figure 1. 

Figure 3: One of many diagrams constructed from free 

particle (i.e. plane wave) propagators which 

contribute to diagrams 3 ( A ) ,  (D) in Figure 2. 
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